Summarize a Collection of Detailed Track Points Grouped by Date
summarize_tracks.Rd
Summarize a Collection of Detailed Track Points Grouped by Date
Arguments
- tracks
A data.frame or tibble of track detail data points, e.g. track_details
Value
A tibble summarizing tracks
, one row per date. Values (i.e. columns) are:
date
the date of the tripweekday
weekday corresponding todate
; factor with English weekday names; computed fromdate
, only included for conveniencedistance_km
length of the track (in kilometers)time_min
duration of the track (in minutes)altitude_gain_m
total altitude gained during the track (in meters), without compensating for altitude lostavg_inclination
average inclination of the track, calculated as altitude gain in meters / distance in mtemperature_c
median temperature of the track (in degrees Celsius)speed_km_h
average speed of the track (in km/h)avg_hr_bpm
average heart rate for the track (in beats per minute)below_zones_min
time spent below heart rate zone 1 (i.e. < 60% of max. hr / < 109 bpm) (in minutes)zone1_min
time spent in heart rate zone 1 (i.e. [60;70)% of max. hr / [109;127) bpm) (in minutes)zone2_min
time spent in heart rate zone 2 (i.e. [70;80)% of max. hr / [127;145) bpm) (in minutes)zone3_min
time spent in heart rate zone 3 (i.e. [80;90)% of max. hr / [145;164) bpm) (in minutes)zone4_min
time spent in heart rate zone 4 (i.e. [90;100)% of max. hr / [164;182) bpm) (in minutes)above_zones_min
time spent above heart rate zone 4 (i.e. >= 100% of max. hr / 182 bpm) (in minutes)samples
number of data point for the track, i.e. the number of data points which were aggregated for this row
Examples
# summarize all detailed data points by date
summarize_tracks(track_details)
#> # A tibble: 157 × 16
#> date distance_km time_min altitude_gain_m avg_inclination temperature_c
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2018-07-30 36.3 81.8 492 0.0135 30.3
#> 2 2018-07-31 79.3 163. 369 0.00466 21.2
#> 3 2018-08-03 23.9 55.9 344 0.0144 28
#> 4 2018-08-04 30.2 63.3 249 0.00825 31.9
#> 5 2018-08-06 23.8 52.6 337 0.0142 26.3
#> 6 2018-08-10 21.5 47.8 246 0.0115 21.4
#> 7 2018-08-11 71.0 176. 1152 0.0162 22.4
#> 8 2018-10-12 25.3 58.1 372 0.0147 20.6
#> 9 2018-10-13 30.3 69.7 264 0.00870 23.4
#> 10 2019-05-23 19.0 41.8 242 0.0127 21.4
#> # ℹ 147 more rows
#> # ℹ 10 more variables: speed_km_h <dbl>, avg_hr_bpm <dbl>,
#> # below_zones_min <dbl>, zone1_min <dbl>, zone2_min <dbl>, zone3_min <dbl>,
#> # zone4_min <dbl>, above_zones_min <dbl>, samples <int>, weekday <fct>
# summarize only a specific date
library(dplyr)
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
track_details |>
filter(date == "2020-06-01") |>
summarize_tracks()
#> # A tibble: 1 × 16
#> date distance_km time_min altitude_gain_m avg_inclination temperature_c
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2020-06-01 59.2 128. 719 0.0121 23.6
#> # ℹ 10 more variables: speed_km_h <dbl>, avg_hr_bpm <dbl>,
#> # below_zones_min <dbl>, zone1_min <dbl>, zone2_min <dbl>, zone3_min <dbl>,
#> # zone4_min <dbl>, above_zones_min <dbl>, samples <int>, weekday <fct>